On Directed and Undirected Propagation Algorithms for Bayesian Networks

نویسندگان

  • Christophe Gonzales
  • Khaled Mellouli
  • Olfa Mourali
چکیده

Message-passing inference algorithms for Bayes nets can be broadly divided into two classes: i) clustering algorithms, like Lazy Propagation, Jensen’s or Shafer-Shenoy’s schemes, that work on secondary undirected trees; and ii) conditioning methods, like Pearl’s, that use directly Bayes nets. It is commonly thought that algorithms of the former class always outperform those of the latter because Pearl’s-like methods act as particular cases of clustering algorithms. In this paper, a new variant of Pearl’s method based on a secondary directed graph is introduced, and it is shown that the computations performed by Shafer-Shenoy or Lazy propagation can be precisely reproduced by this new variant, thus proving that directed algorithms can be as efficient as undirected ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Loopy Belief Propagation in Bayesian Networks : origin and possibilistic perspectives

In this paper we present a synthesis of the work performed on two inference algorithms: the Pearl’s belief propagation (BP) algorithm applied to Bayesian networks without loops (i.e. polytree) and the Loopy belief propagation (LBP) algorithm (inspired from the BP) which is applied to networks containing undirected cycles. It is known that the BP algorithm, applied to Bayesian networks with loop...

متن کامل

Improve Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network

The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in  power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...

متن کامل

A conditional independence algorithm for learning undirected graphical models

When it comes to learning graphical models from data, approaches based on conditional independence tests are among the most popular methods. Since Bayesian networks dominate research in this field, these methods usually refer to directed graphs, and thus have to determine not only the set of edges, but also their direction. At least for a certain kind of possibilistic graphical models, however,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007